Limit Theorems for Deviation Means of Independent and Identically Distributed Random Variables
نویسندگان
چکیده
We derive a strong law of large numbers, central limit theorem, the iterated logarithm and deviation theorem for so-called means independent identically distributed random variables. (For we suppose only pairwise independence instead (total) independence.) The class is special M-estimators or more generally extremum estimators, which are well studied in statistics. assumptions our theorems seem to be new weaker than known ones literature. In particular, results on numbers generalize corresponding quasi-arithmetic due de Carvalho (Am Stat 70(3):270–274, 2016) Bajraktarević Barczy Burai (Aequ Math 96(2):279–305, 2022).
منابع مشابه
Comparison of Sums of Independent Identically Distributed Random Variables
Let Sk be the k-th partial sum of Banach space valued independent identically distributed random variables. In this paper, we compare the tail distribution of ‖Sk‖ with that of ‖Sj‖, and deduce some tail distribution maximal inequalities. The main result of this paper was inspired by the inequality from [dP–M] that says that Pr(‖X1‖ > t) ≤ 5 Pr(‖X1 +X2‖ > t/2) whenever X1 and X2 are independent...
متن کاملGenerating the Maximum of Independent Identically Distributed Random Variables
Frequently the need arises for the computer generation of variates that are exact/y distributed as 2 = max(X,, . , X.) where X,, . . . , X, form a sequence of independent identically distributed random variables. For large n the individual generation of the Xi’s is unfeasible, and the inversion-of-a-beta-variate is potentially inaccurate. In this paper, we discuss and compare the corrected inve...
متن کاملLimit theorems of probability theory : Sequences of independent random variables
The simple notion of statistical independence lies at the core of much that is important in probability theory. First there was the classical central limit theorem (CLT) of De Moivre and Laplace which, in its final form due to Paul Lévy, says that the sum Sn of n independent and identically distributed (i.i.d.) random variables Xj (1 ≤ j ≤ n) having finite second moments is asymptotically Gauss...
متن کاملCentral Limit Theorems for Dependent Random Variables
1. Limiting distributions of sums of 'small' independent random variables have been extensively studied and there is a satisfactory general theory of the subject (see e.g. the monograph of B.V. Gnedenko and A.N. Kolmogorov [2]). These results are conveniently formulated for double arrays Xn k (k = 1, . . . , kn ; n = 1, 2, . . . ) of random variables where the Xn k (k = 1, . . . , kn), the rand...
متن کاملOn the Invariance Principle for Sums of Independent Identically Distributed Random Variables
The paper deals with the invariance principle for sums of independent identically distributed random variables. First it compares the different possibilities of posing the problem. The sharpest results of this theory are presented with a sketch of their proofs. At the end of the paper some unsolved problems are given.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Theoretical Probability
سال: 2022
ISSN: ['1572-9230', '0894-9840']
DOI: https://doi.org/10.1007/s10959-022-01225-6